一、激光焊接的主要特性
激光焊接是激光材料加工技術(shù)應(yīng)用的重要方面之一。20世紀(jì)70年代主要用于焊接薄壁材料和低速焊接,焊接過程屬熱傳導(dǎo)型,即激光輻射加熱工件表面,表面熱量通過熱傳導(dǎo)向內(nèi)部擴(kuò)散,通過控制激光脈沖的寬度、能量、峰值功率和重復(fù)頻率等參數(shù),使工件熔化,形成特定的熔池。由于其獨特的優(yōu)點,已成功應(yīng)用于微、小型零件的精密焊接中。
高功率CO2及高功率YAG激光器的出現(xiàn),開辟了激光焊接的新領(lǐng)域。獲得了以小孔效應(yīng)為理論基礎(chǔ)的深熔焊接,在機(jī)械、汽車、鋼鐵等工業(yè)領(lǐng)域獲得了日益廣泛的應(yīng)用。
與其它焊接技術(shù)相比,激光焊接的主要優(yōu)點是:
1、速度快、深度大、變形小。
2、能在室溫或特殊條件下進(jìn)行焊接,焊接設(shè)備裝置簡單。例如,激光通過電磁場,光束不會偏移;激光在真空、空氣及某種氣體環(huán)境中均能施焊,并能通過玻璃或?qū)馐该鞯牟牧线M(jìn)行焊接。
3、可焊接難熔材料如鈦、石英等,并能對異性材料施焊,效果良好。
4、激光聚焦后,功率密度高,在高功率器件焊接時,深寬比可達(dá)5:1,可達(dá)10:1。
5、可進(jìn)行微型焊接。激光束經(jīng)聚焦后可獲得很小的光斑,且能定位,可應(yīng)用于大批量自動化生產(chǎn)的微、小型工件的組焊中。
6、可焊接難以接近的部位,施行非接觸遠(yuǎn)距離焊接,具有很大的靈活性。尤其是近幾年來,在YAG激光加工技術(shù)中采用了光纖傳輸技術(shù),使激光焊接技術(shù)獲得了更為廣泛的推廣和應(yīng)用。
7、激光束易實現(xiàn)光束按時間與空間分光,能進(jìn)行多光束同時加工及多工位加工,為更精密的焊接提供了條件。
但是,激光焊接也存在著一定的局限性:
1、要求焊件裝配精度高,且要求光束在工件上的位置不能有顯著偏移。這是因為激光聚焦后光斑尺雨寸小,焊縫窄,為加填充金屬材料。若工件裝配精度或光束定位精度達(dá)不到要求,很容易造成焊接缺憾。
2、激光器及其相關(guān)系統(tǒng)的成本較高,一次性投資較大。
二、激光焊接熱傳導(dǎo)
激光焊接是將高強(qiáng)度的激光束輻射至金屬表面,通過激光與金屬的相互作用,使金屬熔化形成焊接。在激光與金屬的相互作用過程中,金屬熔化僅為其中一種物理現(xiàn)象。有時光能并非主要轉(zhuǎn)化為金屬熔化,而以其它形式表現(xiàn)出來,如汽化、等離子體形成等。然而,要實現(xiàn)良好的熔融焊接,必須使金屬熔化成為能量轉(zhuǎn)換的主要形式。為此,必須了解激光與金屬相互作用中所產(chǎn)生的各種物理現(xiàn)象以及這些物理現(xiàn)象與激光參數(shù)的關(guān)系,從而通過控制激光參數(shù),使激光能量絕大部分轉(zhuǎn)化為金屬熔化的能量,達(dá)到焊接的目的。
三、激光焊接的工藝參數(shù)
1、功率密度
功率密度是激光加工中關(guān)鍵的參數(shù)之一。采用較高的功率密度,在微秒時間范圍內(nèi),表層即可加熱至沸點,產(chǎn)生大量汽化。因此,高功率密度對于材料去除加工,如打孔、切割、雕刻有利。對于較低功率密度,表層溫度達(dá)到沸點需要經(jīng)歷數(shù)毫秒,在表層汽化前,底層達(dá)到熔點,易形成良好的熔融焊接。因此,在傳導(dǎo)型激光焊接中,功率密度在范圍在104~106W/cm2。
2、激光脈沖波形
激光脈沖波形在激光焊接中是一個重要問題,尤其對于薄片焊接更為重要。當(dāng)高強(qiáng)度激光束射至材料表面,金屬表面將會有60~98%的激光能量反射而損失掉,且反射率隨表面溫度變化。在一個激光脈沖作用期間內(nèi),金屬反射率的變化很大。
3、激光脈沖寬度
脈寬是脈沖激光焊接的重要參數(shù)之一,它既是區(qū)別于材料去除和材料熔化的重要參數(shù),也是決定加工設(shè)備造價及體積的關(guān)鍵參數(shù)。 |